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Abstract

A structure capable of substantially amplifying water waves over a broad range of frequencies at
selected locations is proposed. The structure consists of a small number of C-shaped cylinders in a
line array, with the cylinder properties graded along the array. Using linear potential-flow theory,
it is shown that the energy carried by a plane incident wave is amplified within specified cylinders,
for wavelengths comparable to the array length, and for a range of incident directions. Transfer
matrix analysis is used to attribute the large amplifications to excitation of local Rayleigh–Bloch
waves and gradual slowing down of their group velocity along the array.

1 Introduction

Arrays of fixed or floating bodies are common in contemporary water-wave problems, including wave-
energy harvesting [1], offshore wind farms [2], coastal protection [3] and supports for bridges or other
offshore structures [4]. An overarching challenge is to design arrays that control the spatial distribution
of wave energy, and, particularly in the case of wave-energy harvesting, to amplify the energy of target
frequencies at the locations of the array elements [in this context the wave-energy converters; e.g.
5, 6, 7].

An apparently disconnected subject is that of wave propagation through metamaterials, where the
term metamaterial specifically refers to use of sub-wavelength resonator arrays, as opposed to Bragg
scattering in periodic crystal lattices. Metamaterials originate in optics/electromagnetism [8], and
have been used to realise remarkable behaviours, such as cloaking [9] and super-resolution lenses [10],
among many others. These successes have motivated the development of metamaterials in other areas
of physics [11], most notably in acoustics [e.g. 12], and elasticity/seismology [e.g. 13].

Metamaterials have found relatively few applications in the water-wave context, with some no-
table exceptions. Most relevant to the present study, Hu et al. [14] theoretically predict negative
effective gravity within a doubly-periodic array of resonators in the form of thin-walled, hollow,
bottom-mounted, vertical cylinders with narrow slits, analogous to split-ring resonators familiar in
optics or Helmholtz resonators in acoustics [e.g. 9]. The negative gravity prohibits propagation of
low-frequency water waves, which Hu et al. [15] demonstrate experimentally using a line of C-shaped
cylinders (i.e. single slits) in a wave flume. In a similar study, [16] use numerical simulations and labo-
ratory experiments to show that a doubly-periodic array of C-shaped cylinders prohibits low-frequency
wave propagation.

Graded arrays, also known as chirped arrays, in which the properties of the lattice and/or ar-
ray elements vary spatially, are an active area in metamaterials research at present (and also in
photonic/phononic-crystal research). The general concept is that for a graded structure, surface, or
waveguide, different frequencies can be trapped, and hence amplified, at different spatial locations,
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Figure 1: Logarithm of normalised energy along an array of ten C-shaped cylinders for head-on incident
waves (propagating in the positive x-direction) with wavelengths (a) λ = 49 m, (b) 58 m, (c) 68 m,
(d) 79 m and (e) 88 m, corresponding to resonant wavelengths in cylinder 2, 4, 6, 8 and 10, respectively
(ordered left to right), when in isolation.

thus creating a device that traps a broadband signal. This is often referred to as rainbow trapping, due
to the spatial frequency separation [17]. In the case of a metamaterial, sub-wavelength regimes can
be accessed and the device spatially separates the differing frequency components by grading the sub-
wavelength resonators. The locations at which different wavelengths are isolated are then controlled
and predicted using knowledge of the individual resonances and their interactions, with applications
to, e.g., broadband absorption of light [18] and sound [19].

In this study, a method is illustrated to amplify water wave energy along a structure, at locations
selected according to wave frequency, using resonant structural elements and grading the element
properties along the structure. In comparison with most cognate studies in optics/acoustics/elasticity,
and in keeping with practical design considerations in the field of water waves, the structure contains a
modest number of elements only, consisting of a single line array of elements, and with the array length
comparable to the target wavelengths. The elements are bottom-mounted C-shaped cylinders, similar
to those used by Hu et al. [15] and Dupont et al. [16], although, crucially, the cylinder properties are
graded in the present study.

As a motivating example, Fig. 1 shows the depth-integrated wave energy, E, along a line array of
ten C-shaped cylinders in a water domain of infinite horizontal extent (x, y ∈ R), produced by plane
incident waves travelling in the direction of the line (the x-direction, i.e. head-on incidence). Energy
distributions are shown for five different wavelengths, λ, where the cylinder radius gradually increases
from 3.25 m to 6.5 m, and the incident energy is normalised to unity. To put the array dimensions in
context, adjacent cylinder centres are W = 15 m apart, which is less than three times smaller than the
shortest wavelength considered, and means the overall length of the array is 142.75 m, which is less
than three times greater than the shortest wavelength and less than two times the longest wavelength.

The five incident wavelengths are chosen to be close to the longest-resonant wavelengths for cylin-
ders 2, 4, 6, 8 and 10 (ordered from left to right). Large energy amplifications are evident in these
cylinders for the corresponding wavelengths, but are often overshadowed by even larger amplifications
in the cylinders immediately preceding them (with respect to the incident wave direction). The maxi-
mum amplifications increase with increasing wavelength, from E ≈ 67.2 in cylinder 1 for λ = 49 m, to
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E ≈ 524 in cylinder 9 for λ = 88 m, which is over 11 times greater than the amplification for the cylin-
der in isolation. These significant amplifications have been attained without invoking optimisation
strategies or parameter tuning.

2 Preliminaries

Consider a water domain of infinite horizontal extent and finite depth h, bounded below by a flat
bed and above by a free surface, and containing a line array of M infinitely thin, vertical, C-shaped
cylinders that extend throughout the water column. A Cartesian coordinate system X = (x, y, z)
defines locations in the water domain, where x = (x, y) is the horizontal coordinate and z is the
vertical coordinate. The vertical coordinate points directly upwards, with its origin, z = 0, coinciding
with the equilibrium free surface, and z = −h denoting the bed.

The water velocity field is defined as u(X, t) = ∇Re{(g A/ iω)φ(X) exp(−iω t)}, where φ is a
(dimensionless) reduced complex-valued velocity potential, A is the incident wave amplitude, ω ∈ R is
a prescribed angular frequency, and g ≈ 9.81 m s−2 is the constant of gravitational acceleration. The
velocity potential satisfies Laplace’s equation throughout the linearised water domain, i.e.

∇2φ = 0 for X ∈ D × (−h, 0), (1a)

where D = R2 \ C, and C is the union of the M C-shaped cylinder horizontal cross-sections. It also
satisfies the impermeable bed and linearised free surface conditions,

∂φ

∂z
= 0 for x ∈ D, z = −h, and

∂φ

∂z
=
ω2

g
φ for x ∈ D, z = 0, (1b)

respectively, and the Sommerfeld radiation condition in the far field |x| → ∞.
Without loss of generality, the array is assumed to lie along the x-axis. Let the cylinders be indexed

m = 1, . . . ,M from left to right, and the domain occupied by the mth cylinder be X ∈ Cm × (−h, 0),
where

Cm = {x : (x− xm, y) = am (cosϑm, sinϑm), where ϕ− π < ϑm < π − ϕ}. (2)

Here, xm = (m − 1)W is the cylinder centre location along the x-axis, am is its radius, and ϕ is
the half-angle of its opening (identical for all cylinders), and the openings are at the left-hand end of
the cylinders and symmetric about the x-axis, as shown in Fig. 1. The velocity potential satisfies a
no-normal-flow condition at the cylinder surfaces, i.e.

∂φ

∂n
= 0 for X ∈ Cm × (−h, 0) (m = 1, . . . ,M), (3)

where ∂/∂n ≡ n · ∇ and n is the normal vector to the cylinder surfaces, together with a condition
ensuring the correct singularity at the tips of the C-shape.

Motions are forced by a plane incident wave, with velocity potential

φinc(X) = exp{i k (x cosψ + y sinψ)} cosh{k (z + h)}
cosh(k h)

, (4)

where ψ is the incident wave direction with respect to the positive x-axis (ψ = 0 for head-on incidence,
as in Fig. 1), and the wavenumber k = 2π /λ ∈ R+ satisfies the dispersion relation k tanh(k h) =
ω2 / g, and is therefore used as a proxy for frequency. The full wave field is φ = φinc +φsca, where φsca

is the scattered wave field.
A modified version of the method outlined by Bennetts et al. [20] is used to solve the problem. To

implement the method, the x-axis containing the cylinders is divided into M contiguous subintervals
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(xm−1/2, xm+1/2) for m = 1, . . . ,M , where xm±1/2 = xm±W / 2, so that the mth subinterval contains
cylinder m only. The wave field in the mth subinterval is expressed in the directional-spectrum form

φ(X) =

∫
Γ±

A±m(χ) ei k {(x−xm±1/2) cosχ+y sinχ} dχ (5a)

+

∫
Γ∓

B±m(χ) ei k {(x−xm±1/2) cosχ+y sinχ} dχ (5b)

for 0 ≤ ±(x− xm) ≤ W / 2 and x /∈ Ωm, where Ωm = {x : (x− xm)2 + y2 < am}, Γ− = {−π/2 + i γ :
γ ∈ R+} ∪ {γ ∈ R : −π/2 ≤ γ ≤ π/2} ∪ {π/2 − i γ : γ ∈ R+} and Γ+ = Γ− + π. The amplitude
functions A±m and B±m satisfy the scattering relations

B−m(χ) = R−mA−m(χ) + T +
m A+

m(χ) and B+
m(χ) = T −m A−m(χ) +R+

mA
+
m(χ), (6)

where R±m and T ±m are the operators

R±m • (χ) ≡
∫

Γ±

R±m(χ : ψ) • (ψ) dψ and T ±m • (χ) ≡
∫

Γ±

T±m(χ : ψ) • (ψ) dψ. (7)

The scattering kernels, reflection R±m and transmission T±m , respectively, are

R±m(χ : ψ) =
1

π
ei k xm±1/2 (cosχ−cosψ)

∞∑
p,q=−∞

(−1)q−pD(m)
p,q ei (pχ−q ψ) (8a)

and T±m(χ : ψ) = ei k (xm∓1/2 cosχ−xm±1/2 cosψ)
{
δ(χ− ψ) +R±m(χ : ψ)

}
, (8b)

where D
(m)
p,q are entries of the diffraction transfer matrix for the mth cylinder, calculated numerically

using the method of Montiel et al. [21]. Using relations (6), the amplitude functions can be mapped
from the left (−) to the right (+) of their subintervals, via(

A+
m(χ)

B+
m(χ)

)
=

(
−(T +

m )−1{R−mA−m(χ)−B−m(χ)}
{T −m −R+

m (T +
m )−1R−m}A−m(χ) +R+

m (T +
m )−1B−m(χ)

)
(9a)

≡ Pm
(
A−m(χ)

B−m(χ)

)
, (9b)

where Pm is the monodromy operator for the mth subinterval (in terms of the amplitude functions).
Noting that A−m+1(χ) = B+

m(χ) and B−m+1(χ) = A+
m(χ) for m = 1, . . . ,M − 1, amplitude functions in

any two subintervals, the rth and sth subintervals say, where r < s, are thus related via(
A−s (χ)

B−s (χ)

)
= Ps · · · Pr

(
A−r (χ)

B−r (χ)

)
. (10)

For numerical computations, the scattering kernels are sampled at uniformly distributed points
along the real branches of the contours Γ± and truncated versions of their complex branches, thus
mapping the operators R±m and T ±m to so-called scattering matrices, and the monodromy operators
Pm to the so-called transfer (or monodromy) matrices Pm (m = 1, . . . ,M). The amplitude functions,
and hence solution, are then found recursively, using the algorithm of Bennetts and Squire [22], and
setting A−1 (χ) and A+

M (χ) according to the incident wave (4). The Bennetts et al. [20]-esque method
described above is chosen over the standard method based on Graf’s addition formula [23, 24], to gain
insights into the mechanisms underlying the large amplifications shown in Fig. 1, as explained in § 3.
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Figure 2: (a) Log of normalised energy as in Fig. 1e. (b) Corresponding energy with scattered wave
field approximated by the local Rayleigh–Bloch-wave components only. (c–g) Eigenvalue spectra of
transfer matrices operating over (c) cylinder m = 2, (d) 5, (e) 7, (f) 9 and (g) 10, where the closely
spaced black dots approximate the continuous spectra and the red dots define the discrete spectra
corresponding to Rayleigh–Bloch waves.

3 Rayleigh–Bloch waves, dispersion curves and quasi-bandgaps

Fig. 2 shows results that provide the above-mentioned insights into the large amplifications observed
in Fig. 1, for which the array is defined by M = 10, W = 15 m, ϕ = 0.1π, and am = a1 (m + M −
2) / (M − 1) where a1 = 3.25 m. The largest amplification case from Fig. 1, with λ = 88 m, is chosen
as an example, and Fig. 2a is a magnified version of Fig. 1e. The solutions are calculated using 101
sampled points along the real branches of Γ± and 200 points for each complex branch, along with the
truncation Im (χ) ≤ 4.

As shown by Thompson et al. [25] and others for uniform line arrays of ordinary cylinders (with
ϕ = 0, i.e. full cylinders of circular cross-section), the scattered wave field along the array is dom-
inated by so-called Rayleigh–Bloch waves, which propagate in both directions along the array and
decay exponentially in the transverse direction (i.e. y-direction) away from it. As explained below,
line arrays of C-shaped cylinders also support Rayleigh–Bloch waves, and the radius grading causes
their properties to evolve along the array. Fig. 2b is similar to Fig 2a, but with the scattered wave
field approximated by the Rayleigh–Bloch wave components only. The approximation is based on
projecting the scattered wave field in each subinterval onto the eigenfunctions defined by the corre-
sponding transfer matrix, and retaining only the eigenfunctions associated to local Rayleigh–Bloch
waves, i.e. Rayleigh–Bloch waves associated to a particular cylinder and spacing. Notwithstanding
the small discontinuities, which are an inevitable consequence of the approximation method, the ap-
proximation is highly accurate, particularly with respect to the large amplifications, thus confirming
the amplifications are due to excitation of local Rayleigh–Bloch waves.

Figs. 2c–g show eigenvalue spectra of the transfer matrices, µ ∈ eig{Pm}, for m = 2, 5, 7, 9 and
10, respectively, in the complex plane. The closely spaced black dots along an arc of the unit circle
approximate the continuous spectrum, corresponding to plane wave forcing, i.e. µ = exp{i kW cosχ}
for χ ∈ (−π, π), and with eigenfunctions that display delta-function like behaviour around the inci-
dent direction [not shown; see Fig. 4 by 20]. Eigenvalues in the continuous spectrum corresponding to
evanescent wave forcing are omitted from the plots for clarity. The two red dots represent the discrete

5



ac
ce

pt
ed

spectrum, corresponding to Rayleigh–Bloch waves, i.e. µ = exp{±iβW}, where β is the Rayleigh–
Bloch wavenumber, and with regular eigenfunctions [again, see Fig. 4 by 20]. The eigenvalue in the
upper-half complex plane correspondsto a rightward-propagating Rayleigh–Bloch wave (+) and the
eigenvalue in the lower-half plane correspondsto a leftward-propagating Rayleigh–Bloch wave (−).
Increasing the sampling of the contours Γ± increases the number of eigenvalues in the discrete approx-
imation of the continuous spectrum, but does not affect the eigenvalues (or eigenfunctions) defining
the Rayleigh–Bloch waves, i.e. they are converged.

Fig. 2c shows the spectrum for the transfer matrix that maps over cylinder m = 2, for which
the Rayleigh–Bloch eigenvalues are fractionally displaced along the unit circle from the ends of the
continuous spectrum. Figs. 2d–f show that the spectra of the transfer matrices farther along the
array have identical continuous spectra, but that the Rayleigh–Bloch eigenvalues rapidly move along
the unit circle away from the continuous spectrum. As the Rayleigh–Bloch eigenvalues approach −1
from above (+) and below (−), the group velocity of the Rayleigh–Bloch waves reduces, and when
the eigenvalues meet at −1 the Rayleigh–Bloch waves become standing waves known as a Neumann
trapped mode [26]. Fig. 2g shows the spectrum for the final cylinder along the array (m = 10), for
which the Rayleigh–Bloch eigenvalues have jumped onto the negative branch of the real line, meaning
β ∈ π+ iR+ and the Rayleigh–Bloch waves no longer propagate. (The eigenvalue associated to −β is
beyond the axes limits for m = 10.)

Therefore, the cylinder-radius grading causes the rightward-propagating Rayleigh–Bloch wave ex-
cited at the leading end of the array (m = 1) to slow down progressively along the array, until it
reaches a turning point, at which the group velocity is zero. In the language of waveguide modes,
at this point, the wave is cut-off and ceases to propagate. The energy carried by the local Rayleigh–
Bloch wave accumulates at the turning point, thereby generating large amplifications. This behaviour
is broadly analogous to the effect of gradually decreasing the width of an acoustic or ocean waveguide,
so that a waveguide mode is eventually cut-off with its energy reflected from the turning point, with
propagation in a wedge being the archetypal example [27].

The location of the Rayleigh–Bloch eigenvalues in the complex plane depends on the frequency of
motion, i.e. incident wavelength. In particular, as frequency increases the eigenvalues depart the unit
circle for smaller cylinder radii, meaning the local Rayleigh–Bloch waves propagate shorter distances
along the array. Thus, as shown in Fig. 1, energy accumulates closer to the leading end of the
array as frequency increases, i.e. incident wavelength decreases, so that the array spatially separates
frequencies/wavelengths.

Fig. 3 shows Rayleigh–Bloch dispersion curves for C-shaped cylinders in periodic line arrays. These
curves are valuable for interpreting behaviours along graded arrays as, assuming the array grading
is sufficiently gradual that waves behave locally as if they are in a uniform array, one can then use
the dispersion curves to estimate the turning points for different frequencies. The dispersion curves
are shown in the first irreducible Brillouin zone βW ∈ [0, π], and curves for ordinary cylinders are
shown for comparison where appropriate, along with the dispersion line (so-called light-line) for the
bulk media, k = β. Fig. 3a shows dispersion curves corresponding to the array used in Figs. 1–2. Each
C-shaped cylinder curve follows the light-line for low frequencies k/small wavenumbers β, but rapidly
departs the light-line as the frequency/wavenumber increases, and cuts off (βW = π) at a relatively
low frequency, just below the resonant frequency for the isolated cylinder, meaning the cut-off can be
tuned by altering the resonance.

The frequency interval occupied by the dispersion curve is conventionally known as a passband
in periodic media. In this instance, frequencies in the passband support propagating Rayleigh–Bloch
waves. For frequencies above the passband, Rayleigh–Bloch waves do not propagate, which is anal-
ogous to a so-called bandgap in periodic media, but is here referred to as a quasi-bandgap due to
propagating modes in the continuous spectrum being supported by the array for these frequencies (as
shown in Fig. 2g). As the cylinder radius increases, the resonant frequency decreases, thus pushing the
dispersion curves down, and narrowing the passbands. Therefore, a range of frequencies exists in the
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Figure 3: Rayleigh–Bloch dispersion curves for C-shaped cylinders (solid blue curves) and ordinary
cylinders (solid grey), with the light-line (broken black) given for reference. (a) Varying cylinder
radius: a = 3.25 m (i.e. cylinder m = 1; / ), a = 4.7 m (m = 5; / ) and a = 6.5 m (m = 10; / ).
(b) Varying cylinder spacing for a = 4.7 m: W = 15 m ( / ), W = 18.75 m ( / ) and a = 22.5 m
( / ). (c) Varying opening half-angle: ϕ = π/20 ( ), ϕ = π/10 ( ) and ϕ = π/5 ( ).

passband for the small cylinders at the leading end of the array that transition into quasi-bandgaps as
the radius increases along the array. Local Rayleigh–Bloch waves at these frequencies meet a turning
point within the array, with the associated energy trapped within the array. Doubling the radius from
a = 3.25 m to 6.5 m almost halves the passband width (reduction factor ≈ 0.51), indicating that radius
grading is an effective way to capture a wide range of frequencies.

For the ordinary cylinders, the dispersion curves follow the light-line for a wide range of frequen-
cies/wavenumbers in the Brillouin zone, before departing the light-line and cutting-off just below
kW = π. Therefore, only relatively high frequencies/short wavelengths fail to excite propagating
Rayleigh–Bloch waves along the array, and thus can be captured. Moreover, doubling the radius of
the ordinary cylinders from a = 3.25 m to 6.5 m reduces the passband width by a factor of ≈ 0.94
only, and increasing the cylinder from 4.7 m to 6.5 m reduces the width by less than 1% (curves are
virtually indistinguishable). It follows that grading the radius of ordinary cylinders captures only a
narrow range of (high) frequencies and is less effective than using the C-shaped resonators.

Fig. 3b shows the effect of changing cylinder spacing, W , on the dispersion curves, for a cylinder
radius a = 4.7 m, i.e. cylinder m = 5 in Figs. 1–2, noting that different radii produce cognate results.
For the C-shaped cylinders, the passband width is insensitive to changes in the array spacing (increas-
ing from W = 15 m to 22.5 m reduces the width by ≈ 4% only), as the upper limit of the passband
is controlled by the resonant frequency for an isolated cylinder, which is independent of the spacing.
Therefore, grading the spacing of identical C-shaped cylinders is an ineffective approach to capture a
wide range of frequencies. In contrast, quasi-bandgaps for ordinary cylinders are generated by Bragg
scattering mechanisms, so that passband widths can be controlled by the array spacing, noting that
this approach is used in chirped sonic arrays [28, 29]. Increasing the spacing from W = 15 m to 22.5 m
reduces the passband width by a factor of ≈ 0.71, providing a wide frequency capture range, albeit
for relatively high frequencies.

Fig. 3c shows the effect of changing the cylinder opening angle on the dispersion curves, which is
relevant for the C-shaped cylinders only. Decreasing the half-angle from ϕ = π/5 to π/20 decreases the
passband width by an appreciable factor of ≈ 0.77, although the reduction is small in comparison to
the proportional changes in passband width given by varying the cylinder radius. Therefore, grading
the opening angle along the array provides an alternative method to generate turning points along
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the array, and could potentially be combined with radius grading to enhance the frequency capture
width (this is not pursued here).

4 Amplification spectra

Fig. 4 quantifies the overall energy amplification produced by the graded array over ranges of incident
wavelengths and directions, using metrics analogous to the Q-factor familiar in assessing energy gains
(or losses) given by arrays of interacting wave-energy converters [5]. Fig. 4a shows Qarr = E/Einc on a
logarithmic scale, where

E =

M∑
m=1

∫∫
Ωm

|φ|2 dx and Einc =

M∑
m=1

∫∫
Ωm

|φinc|2 dx =

M∑
m=1

π a2
m (11)

are, respectively, the scaled energy contained with the C-shaped cylinders along the array and the
energy of the incident field over the same area. Therefore, Qarr quantifies the overall amplification
given by the array.

For head-on incidence, ψ = 0, the array amplifies the incident energy by over an order of magnitude
for wavelengths λ ∈ (60 m, 98 m), with maximum amplification Qarr ≈ 101.53 ≈ 33.6. For wavelengths
λ < 60 m, the amplification reduces as wavelength decreases, due to the associated frequencies lying
in quasi-bandgaps for the cylinders at the leading end of the array, so that only small quantities of
wave energy penetrate the array. For wavelengths shorter than those shown, higher-order resonances
alter this simple trend. For wavelengths λ > 98 m, the amplification asymptotes towards unity as the
influence of the cylinder on the waves reduces. The behaviour is similar for non-head-on incidence,
with some reduction in amplification, as Rayleigh–Bloch waves are not as strongly excited due to the
loss of symmetry in the incident field with respect to the axis of the array. Amplifications of over an
order of magnitude exist up to φ ≈ 0.18π, and the wavelength interval for which the amplification is
over an order of magnitude is at least 25 m long up to φ = 0.15π.

Fig. 4b shows Qgrd = E/E0 on a logarithmic scale, where

E0 =

M∑
m=1

∫∫
Ωm

|φm|2 dx, (12)

with φm the velocity potential for the mth cylinder in isolation, i.e. with no surrounding cylinders.
Therefore, Qgrd quantifies the overall energy amplification given by the radius grading, independent of
the amplification due to the cylinder resonances. As indicated by Figs. 1–2, for head-on incidence the
grading is most effective for wavelengths that excite resonances in the cylinders towards the trailing
end of the array. The maximum overall amplification due to grading is Qgrd ≈ 100.77 ≈ 5.87 for
λ ≈ 92 m. The amplification is positive for λ > 50 m, with negative amplifications associated to quasi-
bandgaps for shorter waves, as noted above. Similarly, the strength of amplification due to grading
slowly decreases as the incident wave direction moves away from head-on incidence, with the grading
more than trebling the overall amplification, i.e. Qgrd > 3, for wavelengths around λ = 92 m up to
ψ ≈ 0.15π.

5 Conclusions

A graded line array of C-shaped cylinders has been proposed as a structure for frequency separation
and amplification of water-wave energy, and with structural dimensions comparable to the target
wavelengths. Using linear potential-flow theory, and an example in which the array consists of ten
cylinders with graded radii, it was shown that the resonant amplifications within a given cylinder in
the array far exceed those of the cylinder in isolation, and that typically even larger amplifications
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Figure 4: Logarithmic Q-factors as functions of incident wavelength and direction. (a) Qarr = E / Einc,
where E is the integrated energy within the C-shaped cylinders along the array, and Einc is the incident
energy over the same domain. (b) QQgrd = E / E0, where E0 is the integrated energy within equivalent
isolated C-shaped cylinders.
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occur in the preceding cylinder (with respect to wave direction). Further, the array was shown to be
effective in terms of the overall amplification, over broad ranges of wavelengths and incident directions.

A recently developed transfer-matrix solution method was employed, which provided insights into
the mechanisms underlying the large amplifications. Specifically, the method was used to show the
amplifications are generated by excitation of local Rayleigh–Bloch waves — previously only known for
uniform arrays of ordinary cylinders in the water-wave context — and progressive slowing down of the
Rayleigh–Bloch-wave group velocity along the array until it ceases propagating. Further, it was shown
that the amplification locations can be controlled and predicted using the lowest-resonant frequencies
of individual cylinders, as the resonances determine the cut-off frequencies of the Rayleigh–Bloch
dispersion curves.

In the closely related experimental studies reported by Hu et al. [15] and Dupont et al. [16], involv-
ing uniform arrays of C-shaped cylinders, nonlinear energy transfer and dissipation due to, e.g., flow
separation around the C-tips and wave breaking within the cylinders, were found to affect reflected
and transmitted wave fields. However, the experimental measurements were broadly consistent with
band structures derived using linear potential-flow theory, particularly at low frequencies. Therefore,
the proposed graded arrays are likely to amplify wave energy at the theoretically-predicted locations,
but with the amplifications smaller than those predicted.
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